Telegram Group & Telegram Channel
🔍 Как скрытые состояния в HMM отличаются от скрытых представлений в RNN и как это влияет на интерпретируемость

🧠 Скрытые марковские модели (HMM):
В HMM скрытые состояния — это дискретные латентные переменные с четким вероятностным значением. Каждое состояние соответствует конкретному режиму или явлению (например, «дождливо» или «солнечно» в модели погоды), что способствует интерпретируемости. Переходы между состояниями описываются матрицей вероятностей.

🤖 Рекуррентные нейронные сети (RNN):
В отличие от HMM, скрытые состояния в RNN — это непрерывные векторы, которые обучаются автоматически с помощью градиентного спуска. Они могут кодировать сложные аспекты истории последовательности, но не всегда легко интерпретируемы. Каждый элемент скрытого состояния может быть связан с более сложными зависимостями, которые сложно трактовать в явной форме.

💡 Главная проблема:
При попытке трактовать скрытые состояния в RNN как дискретные состояния в HMM можно столкнуться с ошибками. Непрерывные скрытые представления могут не иметь четких «меток», что затрудняет их интерпретацию и объяснение. Важно учитывать, что RNN может захватывать более сложные, но менее интерпретируемые зависимости.

⚠️ Как избежать ошибок:
Не стоит пытаться трактовать скрытые состояния RNN как дискретные. Лучше использовать методы интерпретации, такие как визуализация внимания, чтобы понять, как скрытые состояния влияют на выход модели.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/915
Create:
Last Update:

🔍 Как скрытые состояния в HMM отличаются от скрытых представлений в RNN и как это влияет на интерпретируемость

🧠 Скрытые марковские модели (HMM):
В HMM скрытые состояния — это дискретные латентные переменные с четким вероятностным значением. Каждое состояние соответствует конкретному режиму или явлению (например, «дождливо» или «солнечно» в модели погоды), что способствует интерпретируемости. Переходы между состояниями описываются матрицей вероятностей.

🤖 Рекуррентные нейронные сети (RNN):
В отличие от HMM, скрытые состояния в RNN — это непрерывные векторы, которые обучаются автоматически с помощью градиентного спуска. Они могут кодировать сложные аспекты истории последовательности, но не всегда легко интерпретируемы. Каждый элемент скрытого состояния может быть связан с более сложными зависимостями, которые сложно трактовать в явной форме.

💡 Главная проблема:
При попытке трактовать скрытые состояния в RNN как дискретные состояния в HMM можно столкнуться с ошибками. Непрерывные скрытые представления могут не иметь четких «меток», что затрудняет их интерпретацию и объяснение. Важно учитывать, что RNN может захватывать более сложные, но менее интерпретируемые зависимости.

⚠️ Как избежать ошибок:
Не стоит пытаться трактовать скрытые состояния RNN как дискретные. Лучше использовать методы интерпретации, такие как визуализация внимания, чтобы понять, как скрытые состояния влияют на выход модели.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/915

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

Библиотека собеса по Data Science | вопросы с собеседований from cn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA